Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37765471

RESUMO

The Special Issue "Duckweed: Research Meets Applications" of the journal Plants (ISSN 2223-7747) presents a comprehensive update of the current progress in the field [...].

2.
Plants (Basel) ; 12(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37447086

RESUMO

A spontaneous mutant of the duckweed Lemna gibba clone no. 7796 (known as strain G3, WT) was discovered. In this mutant clone, L. gibba clone no. 9602 (mt), the morphological parameters (frond length, frond width, root length, root diameter) indicated an enlarged size. A change in the frond shape was indicated by the decreased frond length/width ratio, which could have taxonomic consequences. Several different cell types in both the frond and the root were also enlarged. Flow cytometric measurements disclosed the genome size of the WT as 557 Mbp/1C and that of the mt strain as 1153 Mbp/1C. This represents the results of polyploidisation of a diploid clone to a tetraploid one. The mutant clone flowered under the influence of long day-treatment in half-strength Hutner's medium in striking contrast to the diploid WT. Low concentration of salicylic acid (<1 µM) induced flowering in the tetraploid mutant but not in the diploid plants. The transcript levels of nuclear-encoded genes of the photosynthetic apparatus (CAB, RBCS) showed higher abundance in light and less dramatic decline in darkness in the mt than in WT, while this was not the case with plastid-encoded genes (RBCL, PSAA, PSBA, PSBC).

3.
Plants (Basel) ; 12(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37299113

RESUMO

The 6th International Conference on Duckweed Research and Applications (6th ICDRA) was organized at the Institute of Plant Genetics and Crop Plant Research (IPK) located in Gatersleben, Germany, from 29 May to 1 June 2022. The growing community of duckweed research and application specialists was noted with participants from 21 different countries including an increased share of newly integrated young researchers. The four-day conference focused on diverse aspects of basic and applied research together with practical applications of these tiny aquatic plants that could have an enormous potential for biomass production.

4.
Plants (Basel) ; 12(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37299187

RESUMO

The Indo-German Science and Technology Centre (IGSTC) funded an Indo-German Workshop on Sustainable Stress Management: Aquatic plants vs. Terrestrial plants (IGW-SSMAT) which was jointly organized at the Friedrich Schiller University of Jena, Germany from 25 to 27 July 2022 by Prof. Dr. Ralf Oelmüller, Friedrich Schiller University of Jena, Germany as the German coordinator and Dr. K. Sowjanya Sree, Central University of Kerala, India as the Indian Coordinator. The workshop constituted researchers working in this field from both India and Germany and brought together these experts in the field of sustainable stress management for scientific discussions, brainstorming and networking.

5.
Plants (Basel) ; 12(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37299193

RESUMO

Duckweeds (Lemnaceae) are small, simply constructed aquatic higher plants that grow on or just below the surface of quiet waters. They consist primarily of leaf-like assimilatory organs, or fronds, that reproduce mainly by vegetative replication. Despite their diminutive size and inornate habit, duckweeds have been able to colonize and maintain themselves in almost all of the world's climate zones. They are thereby subject to multiple adverse influences during the growing season, such as high temperatures, extremes of light intensity and pH, nutrient shortage, damage by microorganisms and herbivores, the presence of harmful substances in the water, and competition from other aquatic plants, and they must also be able to withstand winter cold and drought that can be lethal to the fronds. This review discusses the means by which duckweeds come to grips with these adverse influences to ensure their survival. Important duckweed attributes in this regard are a pronounced potential for rapid growth and frond replication, a juvenile developmental status facilitating adventitious organ formation, and clonal diversity. Duckweeds have specific features at their disposal for coping with particular environmental difficulties and can also cooperate with other organisms of their surroundings to improve their survival chances.

6.
Plants (Basel) ; 11(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36432762

RESUMO

The predominantly vegetative propagating duckweeds are of growing commercial interest. Since clonal accessions within a respective species can vary considerably with respect to their physiological as well as biochemical traits, it is critical to be able to track the clones of species of interest after their characterization. Here, we compared the efficacy of five different genotyping methods for Spirodela polyrhiza, a species with very low intraspecific sequence variations, including polymorphic NB-ARC-related loci, tubulin-gene-based polymorphism (TBP), simple sequence repeat variations (SSR), multiplexed ISSR genotyping by sequencing (MIG-seq), and low-coverage, reduced-representation genome sequencing (GBS). Four of the five approaches could distinguish 20 to 22 genotypes out of the 23 investigated clones, while TBP resolved just seven genotypes. The choice for a particular method for intraspecific genotyping can depend on the research question and the project budget, while the combination of orthogonal methods may increase the confidence and resolution for the results obtained.

7.
Plants (Basel) ; 11(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36015427

RESUMO

This presentation examines the history of duckweeds in Chinese, Christian, Greek, Hebrew, Hindu, Japanese, Maya, Muslim, and Roman cultures and details the usage of these diminutive freshwater plants from ancient times through the Middle Ages. We find that duckweeds were widely distributed geographically already in antiquity and were integrated in classical cultures in the Americas, Europe, the Near East, and the Far East 2000 years ago. In ancient medicinal sources, duckweeds are encountered in procedures, concoctions, and incantations involving the reduction of high fever. In this regard, we discuss a potential case of ethnobotanical convergence between the Chinese Han and Classical Maya cultures. Duckweeds played a part in several ancient rituals. In one, the unsuitability of its roots to serve as a wick for Sabbath oil lamps. In another reference to its early use as human food during penitence. In a third, a prominent ingredient in a medicinal incantation, and in a fourth, as a crucial element in ritual body purifications. Unexpectedly, it emerged that in several ancient cultures, the floating duckweed plant featured prominently in the vernacular and religious poetry of the day.

8.
Plants (Basel) ; 11(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406948

RESUMO

Samples of two duckweed species, Spirodela polyrhiza and Lemna minor, were collected around small ponds and investigated concerning the question of whether natural populations of duckweeds constitute a single clone, or whether clonal diversity exists. Amplified fragment length polymorphism was used as a molecular method to distinguish clones of the same species. Possible intraspecific diversity was evaluated by average-linkage clustering. The main criterion to distinguish one clone from another was the 95% significance level of the Jaccard dissimilarity index for replicated samples. Within natural populations of L. minor, significant intraspecific genetic differences were detected. In each of the three small ponds harbouring populations of L. minor, based on twelve samples, between four and nine distinct clones were detected. Natural populations of L. minor consist of a mixture of several clones representing intraspecific biodiversity in an aquatic ecosystem. Moreover, identical distinct clones were discovered in more than one pond, located at a distance of 1 km and 2.4 km from each other. Evidently, fronds of L. minor were transported between these different ponds. The genetic differences for S. polyrhiza, however, were below the error-threshold of the method within a pond to detect distinct clones, but were pronounced between samples of two different ponds.

9.
Physiol Mol Biol Plants ; 27(11): 2621-2633, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34924714

RESUMO

Starch can accumulate in both actively growing vegetative fronds and over-wintering propagules, or turions of duckweeds, small floating aquatic plants belonging to the family of the Lemnaceae. The starch synthesizing potential of 36 duckweed species varies enormously, and the starch contents actually occurring in the duckweed tissues are determined by growth conditions, various types of stress and the action of growth regulators. The present review examines the effects of phytohormones and growth retardants, heavy metals, nutrient deficiency and salinity on the accumulation of starch in duckweeds with a view to obtaining high yields of starch as a feedstock for biofuel production. Biotechnological approaches to degrading duckweed starch to its component sugars and the fermentation of these sugars to bio-alcohols are also discussed.

10.
Plants (Basel) ; 10(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34961110

RESUMO

Duckweeds comprise a distinctive clade of pleustophytic monocots that traditionally has been classified as the family Lemnaceae. However, molecular evidence has called into question their phylogenetic independence, with some authors asserting instead that duckweeds should be reclassified as subfamily Lemnoideae of an expanded family Araceae. Although a close phylogenetic relationship of duckweeds with traditional Araceae has been supported by multiple studies, the taxonomic disposition of duckweeds must be evaluated more critically to promote nomenclatural stability and utility. Subsuming duckweeds as a morphologically incongruent lineage of Araceae effectively eliminates the family category of Lemnaceae that has been widely used for many years. Instead, we suggest that Araceae subfamily Orontioideae should be restored to family status as Orontiaceae, which thereby would enable the recognition of three morphologically and phylogenetically distinct lineages: Araceae, Lemnaceae, and Orontiaceae.

11.
Plant Cell ; 33(10): 3207-3234, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34273173

RESUMO

The aquatic Lemnaceae family, commonly called duckweed, comprises some of the smallest and fastest growing angiosperms known on Earth. Their tiny size, rapid growth by clonal propagation, and facile uptake of labeled compounds from the media were attractive features that made them a well-known model for plant biology from 1950 to 1990. Interest in duckweed has steadily regained momentum over the past decade, driven in part by the growing need to identify alternative plants from traditional agricultural crops that can help tackle urgent societal challenges, such as climate change and rapid population expansion. Propelled by rapid advances in genomic technologies, recent studies with duckweed again highlight the potential of these small plants to enable discoveries in diverse fields from ecology to chronobiology. Building on established community resources, duckweed is reemerging as a platform to study plant processes at the systems level and to translate knowledge gained for field deployment to address some of society's pressing needs. This review details the anatomy, development, physiology, and molecular characteristics of the Lemnaceae to introduce them to the broader plant research community. We highlight recent research enabled by Lemnaceae to demonstrate how these plants can be used for quantitative studies of complex processes and for revealing potentially novel strategies in plant defense and genome maintenance.


Assuntos
Araceae/genética , Genoma de Planta , Genômica
12.
Genome Res ; 31(2): 225-238, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33361111

RESUMO

Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana, where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth.

14.
Nat Commun ; 10(1): 1857, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992439

RESUMO

The original HTML version of this Article had an incorrect Published online date of 20 March 2019; it should have been 18 March 2019. This has been corrected in the HTML version of the Article. The PDF version was correct from the time of publication.

15.
Nat Commun ; 10(1): 1243, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30886148

RESUMO

Mutation rate and effective population size (Ne) jointly determine intraspecific genetic diversity, but the role of mutation rate is often ignored. Here we investigate genetic diversity, spontaneous mutation rate and Ne in the giant duckweed (Spirodela polyrhiza). Despite its large census population size, whole-genome sequencing of 68 globally sampled individuals reveals extremely low intraspecific genetic diversity. Assessed under natural conditions, the genome-wide spontaneous mutation rate is at least seven times lower than estimates made for other multicellular eukaryotes, whereas Ne is large. These results demonstrate that low genetic diversity can be associated with large-Ne species, where selection can reduce mutation rates to very low levels. This study also highlights that accurate estimates of mutation rate can help to explain seemingly unexpected patterns of genome-wide variation.


Assuntos
Araceae/genética , Variação Genética , Genoma de Planta , Taxa de Mutação , Dispersão Vegetal/genética , África , América , Araceae/classificação , Ásia , Análise Mutacional de DNA , Europa (Continente) , Filogeografia
16.
Plant Foods Hum Nutr ; 74(2): 223-224, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30887272

RESUMO

Duckweeds (Lemnaceae) possess good qualitative and quantitative profiles of nutritional components for its use as human food. However, no studies have been conducted on the probable presence or absence of any adverse effects. The extracts from seven duckweed species (Spirodela polyrhiza, Landoltia punctata, Lemna gibba, Lemna minor, Wolffiella hyalina, Wolffia globosa, and Wolffia microscopica) covering all five genera of the plant family were herewith tested for cytotoxic effects on the human cell lines HUVEC, K-562, and HeLa and for anti-proliferative activity on HUVEC and K-562 cell lines. From these assays, it is evident that duckweeds do not possess any detectable anti-proliferative or cytotoxic effects, thus, the high nutritional value is not diminished by such detrimental factors. The present result is a first step to exclude any harmful effects of highly nutritious duckweed for human.


Assuntos
Araceae/química , Valor Nutritivo , Extratos Vegetais/efeitos adversos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos
17.
Front Chem ; 6: 483, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30420949

RESUMO

Species of the genus Wolffia are traditionally used as human food in some of the Asian countries. Therefore, all 11 species of this genus, identified by molecular barcoding, were investigated for ingredients relevant to human nutrition. The total protein content varied between 20 and 30% of the freeze-dry weight, the starch content between 10 and 20%, the fat content between 1 and 5%, and the fiber content was ~25%. The essential amino acid content was higher or close to the requirements of preschool-aged children according to standards of the World Health Organization. The fat content was low, but the fraction of polyunsaturated fatty acids was above 60% of total fat and the content of n-3 polyunsaturated fatty acids was higher than that of n-6 polyunsaturated fatty acids in most species. The content of macro- and microelements (minerals) not only depended on the cultivation conditions but also on the genetic background of the species. This holds true also for the content of tocopherols, several carotenoids and phytosterols in different species and even intraspecific, clonal differences were detected in Wolffia globosa and Wolffia arrhiza. Thus, the selection of suitable clones for further applications is important. Due to the very fast growth and the highest yield in most of the nutrients, Wolffia microscopica has a high potential for practical applications in human nutrition.

18.
Sci Rep ; 7(1): 3047, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596580

RESUMO

Duckweed species have a great potential to develop into fast-growing crops for water remediation and bioenergy production. Seed production and utilization of hybrid vigour are essential steps in this process. However, even in the extensively-studied duckweed species, Lemna gibba, flower primordia were often aborted prior to maturation. Salicylic acid (SA) and agar solidification of the medium promoted flower maturation and resulted in high flowering rates in L. gibba 7741 and 5504. Artificial cross-pollination between individuals of L. gibba 7741 yielded seeds at high frequencies unlike that in L. gibba 5504. In contrast to clone 7741, the anthers of 5504 did not dehisce upon maturation, its artificially released pollen grains had pineapple-like exine with tilted spines. These pollens were not stained by 2,5-diphenylmonotetrazoliumbromide (MTT) and failed to germinate. Therefore, clone 5504 is male sterile and has potential application with respect to hybrid vigour. Moreover, pollination of flowers of 5504 with 7741 pollen grains resulted in intraspecific hybrid seeds, which was confirmed by inter-simple sequence repeat (ISSR) markers. These hybrid seeds germinated at a high frequency, forming new clones.


Assuntos
Araceae/fisiologia , Infertilidade das Plantas , Araceae/genética , Araceae/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Germinação , Repetições de Microssatélites , Polinização , Sementes/crescimento & desenvolvimento
19.
Food Chem ; 217: 266-273, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27664634

RESUMO

Duckweeds have been consumed as human food since long. Species of the duckweed genera, Spirodela, Landoltia, Lemna, Wolffiella and Wolffia were analysed for protein, fat, and starch contents as well as their amino acid and fatty acid distribution. Protein content spanned from 20% to 35%, fat from 4% to 7%, and starch from 4% to 10% per dry weight. Interestingly, the amino acid distributions are close to the WHO recommendations, having e.g. 4.8% Lys, 2.7% Met+Cys, and 7.7% Phe+Tyr. The content of polyunsaturated fatty acids was between 48 and 71% and the high content of n3 fatty acids resulted in a favourable n6/n3 ratio of 0.5 or less. The phytosterol content in the fastest growing angiosperm, W. microscopica, was 50mgg(-1) lipid. However, the content of trace elements can be adjusted by cultivation conditions. Accordingly, W. hyalina and W. microscopica are recommended for human nutrition.


Assuntos
Araceae/química , Valor Nutritivo , Aminoácidos/análise , Ácidos Graxos/análise , Análise de Alimentos , Proteínas/análise , Amido/análise
20.
Plant Mol Biol ; 89(6): 647-54, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26506824

RESUMO

Duckweed, flowering plants in the Lemnaceae family, comprises the smallest angiosperms in the plant kingdom. They have some of the fastest biomass accumulation rates reported to date for plants and have the demonstrated ability to thrive on wastewater rich in dissolved organic compounds and thus could help to remediated polluted water resources and prevents eutrophication. With a high quality genome sequence now available and increased commercial interest worldwide to develop duckweed biomass for renewables such as protein and fuel, the 3rd International Duckweed Conference convened at Kyoto, Japan, in July of 2015, to update the community of duckweed researchers and developers on the progress in the field. In addition to sharing results and ideas, the conference also provided ample opportunities for new-comers as well as established workers in the field to network and create new aliances. We hope this meeting summary will also help to disseminate the key advances and observations that have been presented in this conference to the broader plant biology community in order to encourage increased cross-fertilization of ideas and technologies.


Assuntos
Araceae , Araceae/genética , Araceae/microbiologia , Araceae/fisiologia , Biodegradação Ambiental , Genoma de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...